神经网络的最新进步已经解决了常见的图表问题,例如链路预测,节点分类,节点聚类,通过将实体和关系的嵌入和关系开发到向量空间中来看。绘图嵌入式对图中存在的结构信息进行编码。然后,编码嵌入式可用于预测图中的缺失链接。然而,获得图表的最佳嵌入可以是嵌入式系统中的计算具有挑战性的任务。我们在这项工作中专注的两种技术是1)节点嵌入来自随机步行的方法和2)知识图形嵌入。随机播放的嵌入物是计算地廉价的,但是是次优的,而知识图形嵌入物表现更好,但是计算得昂贵。在这项工作中,我们研究了转换从基于随机步行方法获得的节点嵌入的转换模型,以直接从知识图方法获得的嵌入,而不会增加计算成本。广泛的实验表明,所提出的变换模型可用于实时解决链路预测。
translated by 谷歌翻译
Machine Translation (MT) system generally aims at automatic representation of source language into target language retaining the originality of context using various Natural Language Processing (NLP) techniques. Among various NLP methods, Statistical Machine Translation(SMT). SMT uses probabilistic and statistical techniques to analyze information and conversion. This paper canvasses about the development of bilingual SMT models for translating English to fifteen low-resource Indian Languages (ILs) and vice versa. At the outset, all 15 languages are briefed with a short description related to our experimental need. Further, a detailed analysis of Samanantar and OPUS dataset for model building, along with standard benchmark dataset (Flores-200) for fine-tuning and testing, is done as a part of our experiment. Different preprocessing approaches are proposed in this paper to handle the noise of the dataset. To create the system, MOSES open-source SMT toolkit is explored. Distance reordering is utilized with the aim to understand the rules of grammar and context-dependent adjustments through a phrase reordering categorization framework. In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Learning classifiers using skewed or imbalanced datasets can occasionally lead to classification issues; this is a serious issue. In some cases, one class contains the majority of examples while the other, which is frequently the more important class, is nevertheless represented by a smaller proportion of examples. Using this kind of data could make many carefully designed machine-learning systems ineffective. High training fidelity was a term used to describe biases vs. all other instances of the class. The best approach to all possible remedies to this issue is typically to gain from the minority class. The article examines the most widely used methods for addressing the problem of learning with a class imbalance, including data-level, algorithm-level, hybrid, cost-sensitive learning, and deep learning, etc. including their advantages and limitations. The efficiency and performance of the classifier are assessed using a myriad of evaluation metrics.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Deep Ensemble Convolutional Neural Networks has become a methodology of choice for analyzing medical images with a diagnostic performance comparable to a physician, including the diagnosis of Diabetic Retinopathy. However, commonly used techniques are deterministic and are therefore unable to provide any estimate of predictive uncertainty. Quantifying model uncertainty is crucial for reducing the risk of misdiagnosis. A reliable architecture should be well-calibrated to avoid over-confident predictions. To address this, we propose a UATTA-ENS: Uncertainty-Aware Test-Time Augmented Ensemble Technique for 5 Class PIRC Diabetic Retinopathy Classification to produce reliable and well-calibrated predictions.
translated by 谷歌翻译
机器翻译系统(MTS)是通过将文本或语音从一种语言转换为另一种语言的有效工具。在像印度这样的大型多语言环境中,对有效的翻译系统的需求变得显而易见,英语和一套印度语言(ILS)正式使用。与英语相反,由于语料库的不可用,IL仍然被视为低资源语言。为了解决不对称性质,多语言神经机器翻译(MNMT)系统会发展为在这个方向上的理想方法。在本文中,我们提出了一个MNMT系统,以解决与低资源语言翻译有关的问题。我们的模型包括两个MNMT系统,即用于英语印度(一对多),另一个用于指示英语(多一对多),其中包含15个语言对(30个翻译说明)的共享编码器码头。由于大多数IL对具有很少的平行语料库,因此不足以训练任何机器翻译模型。我们探索各种增强策略,以通过建议的模型提高整体翻译质量。最先进的变压器体系结构用于实现所提出的模型。大量数据的试验揭示了其优越性比常规模型的优势。此外,本文解决了语言关系的使用(在方言,脚本等方面),尤其是关于同一家族的高资源语言在提高低资源语言表现方面的作用。此外,实验结果还表明了ILS的倒退和域适应性的优势,以提高源和目标语言的翻译质量。使用所有这些关键方法,我们提出的模型在评估指标方面比基线模型更有效,即一组ILS的BLEU(双语评估研究)得分。
translated by 谷歌翻译
主动脉(COA)患者特异性计算流体动力学(CFD)研究的目的 - 在资源约束设置中的研究受到可用成像方式和速度数据采集的可用成像方式的限制。多普勒超声心动图被视为合适的速度获取方式,因为其可用性和安全性较高。这项研究旨在调查经典机器学习(ML)方法的应用,以创建一种适当且可靠的方法,用于从多普勒超声心动图图像中获得边界条件(BCS),用于使用CFD进行血液动力学建模。方法 - 我们提出的方法结合了ML和CFD,以模拟感兴趣区域内的血流动力学流动。该方法的关键特征是使用ML模型来校准CFD模型的入口和出口边界条件(BCS)。 ML模型的关键输入变量是患者心率,因为这是研究中测得的血管的时间变化的参数。在研究的CFD组件中使用ANSYS Fluent,而Scikit-Learn Python库则用于ML分量。结果 - 我们在干预前对严重COA的真实临床案例进行了验证。将我们的模拟的最大缩回速度与从研究中使用的几何形状获得的患者获得的测量最大骨质速度进行了比较。在用于获得BCS的5 mL模型中,顶部模型在测得的最大骨质速度的5 \%之内。结论 - 该框架表明,它能够考虑在测量之间考虑患者心率的变化。因此,当在每个血管上缩放心率时,可以在生理上逼真的BC计算,同时提供合理准确的溶液。
translated by 谷歌翻译
在二阶不确定的贝叶斯网络中,条件概率仅在分布中已知,即概率上的概率。Delta方法已应用于扩展精确的一阶推理方法,以通过从贝叶斯网络得出的总和产物网络传播均值和方差,从而表征了认知不确定性或模型本身的不确定性。另外,已经证明了Polytrees的二阶信仰传播,但没有针对一般的定向无环形结构。在这项工作中,我们将循环信念传播扩展到二阶贝叶斯网络的设置,从而产生二阶循环信念传播(SOLBP)。对于二阶贝叶斯网络,SOLBP生成了与Sum-Propoduct网络生成的网络一致的推论,同时更加有效且可扩展。
translated by 谷歌翻译
最近的反对抗性系统设计问题促使贝叶斯过滤器的反向发展。例如,最近已经制定了逆卡尔曼过滤器(I-KF),以估算对手的卡尔曼滤波器跟踪估计值,因此可以预测对手的未来步骤。本文和伴随论文(第一部分)的目的是通过提出反向扩展的卡尔曼过滤器(I-EKF)来解决非线性系统中的反过滤问题。在同伴论文(第一部分)中,我们发展了I-EKF(有或没有未知输入)和I-KF(未知输入)的理论。在本文中,我们为高度非线性模型开发了这一理论,该模型采用了二阶,高斯总和和抖动的前向EKF。特别是,我们使用有界的非线性方法来得出二阶EKF的理论稳定性保证。为了解决系统模型和正向滤波器对防御者完全知道的标准I-EKF的限制,我们建议复制核基于Hilbert Space基于空间的EKF,以根据其观察值学习未知的系统动力学,可以用作该动态反向过滤器推断对手的估计值。数值实验证明了使用递归的cram \'{e} r-rao下限作为基准测试的拟议过滤器的状态估计性能。
translated by 谷歌翻译